INVESTIGATION OF TEMPERATURE FIELDS IN
A TWO-LAYER SYSTEM WITH A PULSED
HEAT — RADIATION EFFECT
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Results are presented of an analytical and experimental investigation of the temperature field
in acoating—substrate system under a pulsed heat radiation effect.

Complex physicochemical transformations occur in polymer-filled composites (enameled and compound
coatings) during drying and solidifying. Evaporation of the solvents occurs in the first stage at relatively
low temperatures. As the temperature rises further, formation of a three-dimensional polymer structure
occurs in the coating—substrate system at the same time as the removal of the solvents. A perfectly spec-
ific orientation of the polymer molecules hence occurs in the whole thickness of the sealing film, which is
essentially dependent on the thermophysical parameters of the process and governs the quality of the coat-
ing. It has been established earlier that both the kinetics of solvent removal and the specifics of the tem-
perature field development in the system, especially during its nonstationary heating period [1], influences
the process under consideration. It has been established experimentally that the solidification processes
have been intensified successfully during a pulsed heat radiation effect on some polymer coatings, and the
quality of the polymer composites obtained has been raised [2]. Therefore, from the thermophysical view-
point it is meaningful to study the peculiarities of temperature field development in multilayer systems in
order to.examine the thermal solidification processes of coatings under a pulsed energy effect. It is hence
necessary to note the recently published paper [3] about the method and the fundamental tables compiled to
determine the nonstationary temperatures in flat bodies under a pulsed radiant effect.

The experimental determination of temperature fields in thin-layered systems, each of which can
have several tens of microns thickness, is quite difficult and even impossible in a number of practical
cases. At the same time, taking account of the actual periods of a pulsed energy effect and the relatively
high radiant energy flux densities incident on the object, it is necessary to have data about the development
of temperature fields within small time segments calculated in fractions of a second.

In this connection, as well as with the experimental investigation conducted, it turned out to be ex-
pedient to consider the formulation of the problem, known from [5), taking account of the function q(7) (the
radiant flux acting on the surface) described by a Fourier series. Let us have two infinite plates of thick-
ness /; and 7, with different thermophysical coefficients. The initial temperature of the plates is identical
and equal to t;,. A time-varying heat flux q(7) is supplied to one of the surface of the thin-layered system,
while the other surface is heat insulated. An ideal thermal contact exists on the contact boundary of the
plates. It is required to find the temperature distribution in the system. Let us note than an analogous
problem for a three-layer coating—substrate—coating system reduces to the problem formulated in the
case of a symmetric energy effect.

The heat flux q(r) can be represented graphically as presented in Fig, 1. Analytically the flux can
be described by a Fourier series [4]:
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Two solutions of the problem have been obtained: 1) for the first stage of system heating (for small
values of the time), and 2) for the second stage (for large values of the time).

Applying the Laplace transform to (2) and taking account of (3)-(7), we obtain the solution for the
transforms in the following form:
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Let us use the decomposition theorem. Equating denominators of the solution (8) (the expressions
in the square brackets) to zero, we obtain a characteristic equation of the form

1 1

Ky tgp -+ K2 tg K2 Ki'n=0.
After going from the {ransform to the original, we obtain the following solution:
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The series containing exp(—(ufl) (afr/lf)) converge rapidly since the exponential function diminishes
rapidly as up increases and starting with some value 7"> 7! these series can be neglected. Hence, the solu-

tions for the second stage of system heating will become
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For small values of the time (the first stage of system heating), the quantity Vis/ay) 1, is large, and

as is known, for large values of the argument (greater than 6,0) it is possible to set sh Vis/ay) I,
Then we obtain after

Vis/ay) =1/ 2)e\7(s/az)lz [5] approximately, to.the accuracy of the third decimal.
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The first members of both expressionsin (12) are tabulated transforms and we use the theorem of

multiplying transforms to go from the transform to the original under the sums. Finally, the approximate
solution for the first stage of system heating is written as follows:
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Fig. 2. Temperature field of acoating—substrate system
for p;:py = 3:6 sec (A) and p; :p; = 6:6 sec (B) during the
heating period (a) and under quasistationary heating condi-
tions (b): 1) surface; 2) layer junction; 3) substrate center;
4) layer junction according to experimental results t, °C;
T sec.
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For quasistationary system heating conditions (11) permit determination of the temperature fluctua—
tions over the system crosg-section with respect to the mean temperature reached at the correspondingdepths-
within the nonstationary period. To determine the time 7" when it is necessary to use (11) in the computa-
tions, the members containing the exponential function exp(—ud(a7/8#)) in (10) should be estimated. It is
most conveniént to do this by using an electronic computer, '

Using the expressions (11), (13) obtained, curves of the heating kinetics and dynamics were constructed
and analyzed for a coating—substrate system under pulsed thermal radiation heating and convective cool-
ing. The coating in an actual system was glyptal enamel GF-916 with ; = 30 u, while the substrate was a
plate a technical ceramic with 2/, = 6000u. The enamel was deposited on both substrate surfaces, however
the conditions of the problem were satisfied by virtue of organizing symmetric heating and cooling of the
system in the experiments, It should be noted that the enamel under consideration possesses high absorp-
tion (KA ~ 310mm-!) inthe region of the maximum emitted IR energy of the quartz emitters used in the ex-
periments and system heating occurred according to the coating—substrate scheme. The following mean
values of the system thermophysical characteristics were taken in the computations [6]: A, = 0.09 W/m - deg;
Ay = 0.5 W/m-deg; ;= 0.52+-10~7 m%*/sec, @, = 7-10~7 m?/sec.

The relationships between the exposure p, and cooling p, periods were varied during the investigation.
Hence, in order to comply with the conditions of the experiment about not exceeding the ultimate heating
temperature of the heat-sensing system tmax, the change in the ratios p;:py =1:1, 1:2, 1:3 ete. was
due to the change in the densities of the incident radiant fluxes q; within the limits 6-10%-1.5-10% W/m?
and the cooling flux densities q,—1+10°-5-10°W/m?.

Presented in Fig. 2A and B as an illustration are curves characterizing the temperature field develop-
ment in ideal and actual two-layer systems. Changes in the temperature on the interface between the
coating and the substrate, obtained experimentally for appropriate modal parameters of the process are
shown. As follows from the figure, satisfactory agreement is observed between the analytical and experi-
mental heating curves., The effect of the heating tempo and the change in the temperature values over the
coating cross-section, evaluated as several degrees, on the kinetics and dynamics of the solidification pro-
cesses of the kind of enamel under consideration has been established on the basis of analyzmg the results
of the analytical and experimental investigations.

Moreover, it turns out that the temperature drops relative to the mean values across the section of
each layer with different thermophysical characteristics remain high in thin-layered systems in the pulsed
mode not only under nonstationary heating conditions but also in the quasistationary period. As the dura-
tion of the radiation exposure pulse increases, the amplitudes of the fluctuations and the temperature drops
over the system cross-section grow in an appropriate manner.

NOTATION

T is the time;

ty, are the temperature;

@, a; are the temperature conduction coefficients;
Ay, Ay are the heat conduction coefficients;

4, 1 are the layer thicknesses;

Ka = a/ay

KA = N/

Kf = 1y/U.

Subscripts

1, 2 are the coating and the substrate;
dy, 9y are the radiant and convective heat flux densities;
pt, p;  are the periods of radiation heating and air blowing.
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